
Model Data-Centric Computation Abstractions in Machine
Learning Applications

Bingjing Zhang
zhangbj@indiana.edu

Peng Bo
pengb@indiana.edu

Judy Qiu
xqiu@indiana.edu

School of Informatics and Computing
Indiana University

Bloomington, IN, USA

ABSTRACT
Each of the existing parallel machine learning applications
provides one solution to improve model convergence speed
during the training process. We further categorize them
into four types of computation models, and based on these,
we propose a new set of model data-centric computation ab-
stractions which transform the parallel machine learning ap-
plications from training data-centric processing into model
data-centric processing. The analysis uses LDA as an ex-
ample, and the experiment results show that an efficient
parallel model data update pipeline can achieve similar or
higher model convergence speed compared with the related
work.

Keywords
Machine Learning, Big Model Data, Model Computation

1. INTRODUCTION
Machine learning algorithms are a type of induction al-

gorithm which can learn from training examples and make
predictions through the derived model data [11]. During
this period, the training data are repeatedly processed and
the model data are iteratively updated. When applying ma-
chine learning algorithms on a large training dataset with big
model data settings, the inherent challenge lies in that while
training data are split among parallel workers, the model
data which all local computations depend on remain ex-
tremely large and generate significant synchronization over-
head.

In the past, when the model data were small enough to be
held on one machine, classic collective communication meth-
ods were applied to synchronize model data. Though these
operations are high-performance, the current big model data
have exceeded their capabilities. In this situation many new
solutions have been proposed to synchronize the tremendous
model data efficiently. In this paper, we summarize these so-
lutions into four computation models.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

c© 2016 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

Based on the computation models summarized, we pro-
pose a set of model data-centric computation abstractions
to transform traditional training data-centric processing into
model data-centric processing. Through adjusting the model
data synchronization mechanisms and frequencies, we hope
to answer the following four questions:

• What part of the model data needs to be updated?
• When should the model data update happen?
• Where should the model data update occur?
• How is the model data update performed?

With our new computation abstractions, we implement LDA
and compare it with state-of-the-art implementations such
as Yahoo! LDA [5] and Petuum LDA [3] on the “clueweb”
dataset [1] with a total of 10 billion model parameters.
We conduct performance experiments on a cluster of In-
tel Haswell architecture up to 100 nodes with a total of
4000 parallel threads. The results show that through an
efficient parallel model data update pipeline, the new model
data-centric computation abstractions can achieve similar or
faster model convergence speed compared with other com-
petitors.

The following sections describe: a survey of computation
models (Section 2), model data-centric computation model
(Section 3), experiments (Section 4), and conclusions (Sec-
tion 5).

2. COMPUTATION MODEL SURVEY
In this section we use LDA application to demonstrate

the difference between computation models. LDA can be
viewed as a process of decomposing a word-document ma-
trix into one word-topic matrix and another document-topic
matrix. Collapsed Gibbs Sampling [16] is a Markov chain
Monte Carlo (MCMC) type inference algorithm for LDA
topic modeling and shows high scalability in parallelization
[14, 19], In the “initialize” phase, each training point (a word
token in training document dataset), is assigned to a random
topic denoted as zij . It then begins to reassign topics to each
token xij = w by sampling from a multinomial distribution
of a conditional probability of zij :

p
(
zij = k | z¬ij , x, α, β

)
∝

N¬ij
wk + β∑

wN
¬ij
wk + V β

(
M¬ij

kj + α
)

Here superscript ¬ij means that the corresponding token is
excluded. V is the vocabulary size. Nwk is the token count
of word w assigned to topic k in K topics, and Mkj is the
token count of topic k assigned in document j. The matrices



Zij , Nwk and Mkj , are the model data. Hyperparameters α
and β control the topic density in the final model output.
The model data gradually converge during the process of
iterative sampling. This is the phase where the “burn-in”
stage occurs and finally reaches the “stationary” stage. In
real LDA trainers, SparseLDA [20] algorithm is often used
as an optimized CGS implementation.

2.1 Computation Model Attributes
Worker Each parallel unit in a computation model is

called a “worker”. In a parallel implementation, there are
usually two levels of parallelism: I. Distributed Environment
and II. Multi-thread Environment. In Level I each worker is
a process and the workers are synchronized through network
communication. In Level II, the workers are threads and are
coordinated through thread synchronization mechanisms.

Model Data LDA model data contains four parts: I. Zij

- topic assignments on tokens, II.
∑

wN
¬ij
wk - topics’ token

counts, III. Nwk - words’ token counts on topics, IV. Mkj

- documents’ token counts on topics. Part I is stored along
with the training tokens. Part II is always shared between
workers. When Part III is stored in the local, Part IV is
shared between workers, and vice versa.

Synchronized/Asynchronous Algorithm Computa-
tion models can be divided into those with synchronized
algorithms and others with asynchronous algorithms. In
synchronized algorithms, the computation progress on one
worker depends on the progress on other workers; asyn-
chronous algorithms lack this dependency.

The Latest/Stale Model Data Computation models
may use either the latest values or stale values from the
shared model data. Here “latest” means the current model
data used in the computation is up-to-date and not mod-
ified simultaneously by other workers, while “stale” means
the values in the model data are old. Since the computation
model using the latest model data maintains the model con-
sistency, its model output contains less approximation and
is close to the result of the sequential algorithm. In LDA,
the consistency of Model Data Part III and Part IV are the
most relevant. Model Data Part II is commonly stale be-
cause the sums of token counts on topics are very large and
thus some alternation on these values is hardly noticeable.

2.2 The Types of Computation Models
LDA implementations are categories to four types of com-

putation models, each of which uses a different means to
handle the model data and coordinate workers (see Fig.
1). The computation model description focuses on the dis-
tributed environment in which Model Data Part III is cho-
sen to be shared between workers. However computation
models can be applied to a multi-thread environment. In a
system with two levels of parallelism, model composition is
commonly adapted, with one type of model at Level I and
another at Level II.

Computation Model A This computation model uses
a synchronized algorithm to coordinate parallel workers. In
each iteration, once a worker samples a token, it locks a
word’s model data and excludes access from other workers.
When the sampling is done and the related model data is
updated, the worker unlocks it. As long as workers com-
pute and update on different model data, they can execute
in parallel. Because only one worker is allowed to access one
word’s model data each time, the model data used in the

Model

Worker Worker Worker

Model

Worker Worker Worker

Model

Worker Worker Worker
Worker Worker Worker

Model 1 Model 2 Model 3

• Synchronized algorithm
• The latest model

• Synchronized algorithm
• The latest model

• Synchronized algorithm
• Stale model

• Asynchronous algorithm
• Stale model

(A) (B)

(C) (D)

Figure 1: The Types of Computation Models

local computation is always the latest. In real implementa-
tions, due to the high overhead of locking, this computation
model is seldom applied.

Computation Model B The next computation model
also has a synchronized algorithm. Each worker first takes a
partition of the shared model data and performs sampling.
Afterwards the model is shifted between workers. When
all the model partitions are accessed by all the workers, an
iteration is complete. Through model rotation, each word’s
model data is computed and updated only by one worker at a
time so that the consistency of the model data is maintained.

Computation Model C Computation model C uses
a synchronized algorithm but with stale model data. In a
single iteration, each worker firstly fetches all the model data
required by the local computation. If the local model is too
large to fit in memory, local computation can be split to
stages where each time a part of the model data is fetched
and computed. When the local computation is done, the
modifications of local model data from all the workers are
gathered to update the model data.

Computation Model D With this model, an asyn-
chronous algorithm employs stale model data. Here each
worker independently fetches the related model data to lo-
cal, performs the local computation and returns the model
data modifications. Unlike Computation Model A, during
the period of local computation, other workers are allowed
to fetch or update the same word’s model data. As opposed
to Computation Model B and C, there is no synchronization
point in this computation model.

2.3 Discussions
Initial research shows many machine learning algorithms

can be implemented in MapReduce system [9] and later
model data communication is improved by the collective
communication operations in iterative MapReduce [15, 21,
8]. However, this solution is only one special case in Com-
putation Model C and it is not scalable as the model size
grows larger than the capacity of the local memory. As mod-
ern model data may reach 1010 ∼ 1012 parameters, later,
Parameter Server type solutions [13, 5, 17, 6] store model
data to a set of server machines and use Computation Model
D to reduce communication overhead, but Petuum shows
model synchronization is important to model convergence



Table 1: LDA CGS Implementations
Implementation
Name

Algorithm
Computation

Model
PLDA [18] CGS C
PowerGraph LDA [4] CGS C
Yahoo! LDA [5] SparseLDA D
Peacock [19] SparseLDA D & B
Parameter Server [13] CGS, etc. D
Petuum 0.93 [10] SparseLDA D
Petuum 1.1 [12] SparseLDA B & D

and a computation model mixed with C and D proved to
have better performance [10]. Furthermore, Petuum also im-
plements Computation Model B [3, 12] which shows higher
model convergence speed with the latest model data. We
show the computation models used in each LDA implemen-
tation in Table 1. Model composition also occurs in Peacock
[19] and Petuum 1.1 [3], in which one computation model is
used in the distributed environment and another is used in
the multi-thread environment.

3. MODEL DATA-CENTRIC COMPUTA-
TION ABSTRACTIONS

Though each solution promotes a certain computation
model, their effectiveness is not well studied. To improve
the model update rate and increase the model converge
speed, the parallelization of machine learning applications
should be turned from training data-centric processing to
model data-centric processing. To build an efficient par-
allel model data update pipeline, we derive a new set of
model data-centric computation abstractions from the com-
putation models. These abstractions contain model data
abstractions and APIs for model synchronization.

We split model data into partitions and use the concept
“table” to associate data partitions on different workers and
form a complete model dataset. For small model data, tra-
ditional collective communication APIs such as “allgather”
and “allreduce” are used to synchronize model data copies
on all the workers efficiently. For large model datasets which
cannot be held in the memory of one machine, two types of
data abstractions are defined: the global table and the local
table. In global tables, each partition has a unique ID and
represents a part of the whole distributed model dataset;
but in local tables, partitions on different workers can share
the same partition ID. Each of these partitions sharing the
same ID is considered a local version of a partition in the
full distributed model dataset.

We define three model synchronization APIs. The first
two are paired operations following Computation Model C.
“syncGlobalWithLocal” reduces the model data partitions
from local tables to the global table and “syncLocalWith-
Global” redistributes the model data partition in the global
table to local tables. Routing optimized broadcasting is used
if some partitions are required by all the workers. Lastly,
“rotateGlobal” follows Computation Model B. It considers
workers in a ring topology and shifts the partitions in the
global table between neighbors. When the operation is com-
plete, each worker will hold a different set of partitions.
Since each worker only talks to its neighbors, “rotateGlobal”
can transmit global data in parallel without any network

conflicts.
Here we simply discuss the applicability of the model data

computation abstractions based on the computation depen-
dency between the parallel workers and the model data. The
computation dependency can be represented as a matrix,
where each row signifies a worker, each column represents a
global model data partition and each element shows the re-
quirements of the partition in the local computation. Based
on the density of this matrix, we can choose proper oper-
ations in different applications. If the matrix is dense, we
suggest using the “rotateGlobal” operation. If the matrix is
sparse, using “syncGlobalWithLocal” and “syncLocalWith-
Global” is a superior solution.

The new abstractions allow developers to handle model
data synchronization in a convenient way and program iter-
ative machine learning algorithms productively. Many algo-
rithm kernels and applications can be supported in the new
abstractions, including:

• Expectation-Maximization Type

– K-Means Clustering
– CVB (Collapsed Variational Bayesian) for topic

modeling (LDA)

• Gradient Optimization Type

– SGD (Stochastic Gradient Descent) and CCD
(Cyclic Coordinate Descent) for classification
(SVM, Logistic Regression), regression (LASSO),
Collaborative Filtering (Matrix Factorization)

• Markov Chain Monte Carlo Type

– CGS (Collapsed Gibbs sampling) for topic mod-
eling (LDA)

In the future, given access to new abstractions, we can
provide initial answers to the four questions “what”, “when”,
“where”and“how” in model data-centric computations. The
new operation APIs allow us to adjust the mechanisms and
the frequencies of the model synchronization. By exploit-
ing the sparsity of computation dependency and optimizing
routing topology, the new abstractions can benefit many ma-
chine learning applications.

4. EXPERIMENTS
LDA experiments are done on Juliet cluster [2] which

contains 32 nodes each with two 18-core 36-thread Xeon
E5-2699 processors and 96 nodes each with two 12-core 24-
thread Xeon E5-2670 processors. In the experiments, 31
nodes with Xeon E5-2699 and 69 nodes with Xeon E5-2670
are used to form a cluster of 100 nodes, each with 40 threads
and 128GB memory. All the tests are done with Infiniband
through IPoIB support.

We use the “clueweb” dataset to test the effectiveness
of the new model data-centric computation abstractions.
“clueweb” contains 50.5 million documents and 12.48 bil-
lion tokens. Model Data Part III (word’s model data) is
shared between workers. It contains 1 million words, each
with 10 thousand topics, 10 billion parameters in total. The
initial model size is about 14.7GB. Hyperparameters α and
β are both set to 0.01. With the new abstractions, two LDA
applications are developed. One is “rtt”, which follows Com-
putation Model B in Parallelism Level I and Computation
Model D in Level II. Another is “lgs”, which follows Com-
putation Model C in Level I and Computation Model D in



0 5000 10000 15000 20000 25000

Execution Time (s)

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5
M

o
d
e
l 
Li

ke
lih

o
o
d

1e11

Petuum

Yahoo!LDA

lgs

lgs-4s

rtt

Figure 2: Model Convergence Speed on “clueweb”

Level II. Model Data Part II is simply synchronized with
“allreduce” operation per iteration in two implementations.

The performance results are in Fig. 2. Both “rtt” and
Petuum use the same set of computation models and achieve
similar model convergence speed. They are remarkably
faster than the rest. “lgs” proves faster than Yahoo! LDA at
the beginning, but later their model convergence speed lines
tend to overlap. Through adjusting the number of model
synchronization frequencies to 4 per iteration, “lgs-4s” ex-
ceeds Yahoo! LDA from start to finish.

5. CONCLUSIONS
The paper summarizes existing parallel solutions to ma-

chine learning applications into four computation models,
and then provides a new set of model data-centric compu-
tation abstractions which turn the view of machine learning
application parallelization from training data-centric pro-
cessing to model data-centric processing. The initial ex-
periments show that the two LDA applications developed
under the model data-centric computation abstractions can
achieve similar or even faster model convergence speed com-
pared with state-of-the-art implementations. In the future,
by adjusting model update mechanisms and frequencies, we
aim to build an efficient parallel model update pipeline with
high performance model convergence speed.

6. ACKNOWLEDGMENTS
We gratefully acknowledge support from Intel Parallel

Computing Center (IPCC) Grant, NSF 1443054 CIF21
DIBBs 1443054 Grant, and NSF OCI 1149432 CAREER
Grant. We appreciate the system support offered by Fu-
tureSystems.

7. REFERENCES
[1] clueweb. http://lemurproject.org/clueweb09/.

[2] FutureSystems. https://portal.futuresystems.org.

[3] Petuum LDA. https://github.com/petuum/bosen/wi
ki/Latent-Dirichlet-Allocation.

[4] PowerGraph LDA.
https://github.com/dato-code/PowerGraph/blob/mas
ter/toolkits/topic modeling/topic modeling.dox.

[5] Yahoo! LDA.
https://github.com/sudar/Yahoo\ LDA.

[6] A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy,
and A. Smola. Scalable inference in latent variable
models. In WSDM, pages 123–132, 2012.

[7] D. Blei, A. Ng, and M. Jordan. Latent dirichlet
allocation. The Journal of Machine Learning
Research, 3:993–102, 2003.

[8] M. Chowdhury, M. Zaharia, J. Ma, M. Jordan, and
I. Stoica. Managing data transfers in computer
clusters with orchestra. ACM SIGCOMM Computer
Communication Review, 41(4):98–109, 2011.

[9] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski,
A. Ng, and K. Olukotun. Map-reduce for machine
learning on multicore. In NIPS, volume 19, page 281,
2007.

[10] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim,
P. Gibbons, G. Gibson, G. Ganger, and E. Xing. More
effective distributed ml via a stale synchronous parallel
parameter server. In Advances in neural information
processing systems, pages 1223–1231, 2013.

[11] R. Kohavi and F. Provost. Glossary of terms.
http://ai.stanford.edu/˜ronnyk/glossary.html.

[12] S. Lee, J. K. Kim, X. Zheng, Q. Ho, G. Gibson, and
E. Xing. On model parallelization and scheduling
strategies for distributed machine learning. In NIPS,
pages 2834–2842, 2014.

[13] M. Li, D. Andersen, J. W. Park, A. Smola, A. Ahmed,
V. Josifovski, J. Long, E. Shekita, and B.-Y. Su.
Scaling distributed machine learning with the
parameter server. In OSDI, pages 583–598, 2014.

[14] D. Newman, A. Asuncion, P. Smyth, and M. Welling.
Distributed algorithms for topic models. The Journal
of Machine Learning Research, 10:1801–1828, 2009.

[15] J. Qiu and B. Zhang. Mammoth data in the cloud:
clustering social images. In Clouds, Grids and Big
Data, Advances in Parallel Computing. IOS Press,
2013.

[16] P. Resnik and E. Hardist. Gibbs sampling for the
uninitiated. Technical report, University of Maryland,
2010.

[17] A. Smola and S. Narayanamurthy. An architecture for
parallel topic models. In VLDB, volume 3, pages
703–710, 2010.

[18] Y. Wang, H. Bai, M. Stanton, W.-Y. Chen, and E. Y.
Chang. PLDA: parallel latent dirichlet allocation for
large-scale applications. Algorithmic Aspects in
Information and Management, pages 301–314, 2009.

[19] Y. Wang, X. Zhao, Z. Sun, H. Yan, L. Wang, Z. Jin,
L. Wang, Y. Gao, C. Law, and J. Zeng. Peacock:
learning long-tail topic features for industrial
applications. ACM Transactions on Intelligent
Systems and Technology, 6(4), 2015.

[20] L. Yao, D. Mimno, and A. McCallum. Efficient
methods for topic model inference on streaming
document collections. In KDD, pages 937–946, 2009.

[21] B. Zhang and J. Qiu. High performance clustering of
social images in a map-collective programming model.
In Proceedings of the 4th annual Symposium on Cloud
Computing, 2013.


